TWO~-ACTION COMPOUND DECISION PROBLEMS

by

M. V. Johns, Jr.

TECHNICAL REPORT NO. 87

March 11, 1966

Supported by the Army, Navy, Air Force, and NASA under
Contract Nonr-225(53) (NR-C42-002)

with the Office of Naval Research

Gerald J. Lieberman, Project Director

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Govermment

DEPARMENT OF STATISTICS
STANFORD UNIVERSITY

STANFORD, CALIFORNIA



Two-Action Compound Decision Problems
by

M. V. Johns, Jr.

1., Introduction and Summary:

. The compound decision problem considered here consists of a sequence
of component problems; in each of which one of two possibie actions must
be selected. The loss structure is the same for ea-n compenent decision
problem. ZEach component problem involives independent identically dis-
tributed observations whcse common distribution function is unknown but
belongs to some specified parametric or non-parametric family of distri-
butions (e,go, the family of all Poisson distributions with parameter X\
bounded above by some finite number B). This family remains fixed for
all component problems., It is assumed that, at the time a decision is

"made in any particular component problem, the available information
includes the data obtained in all previous component decision problems
in the sequence.

‘gompound decision problems of this type arise in situations where
routine testing and evaluation programs are in operation. For example,
in routine lot by lot acceptance sampling for quality csntrol purposes,
each lot of items is sampled and the lot is either accepted or rejected
on the basis of the observations obtained. Another example arises in
routine medical diagnosis where a decision between twe alternative treat-

ments must be made for each of a continuing sequence of patients on the




basis of results obtaired from a diagriostic test performed on each
patient. In either of these exampies reccrds of all past observations
could certainly be accumu.ated,

In the compound decision prcbiem as formuiated here, nc relation-
ships whatever are assumed to exist among the distributions governing
the cbservations associated with different component decision prcblems
{aside from the requirement that all these distributions are members of
a specified general family). A shrictly "chjective” apprcacn te this
situation appears, at Tirst glance,to require tnat each compcrent problem
be treated in isolation with the denision for each prob.em being based
on the observations obtained for that problem alcne. IT nas been kncwn
for some time, however, that for certain types of compournd decision
problems, substantially better performance in terms OT avarage risk
incurred for a number of compornent problems may be cbtained by using
"compound decision prccedures” which make explicit use at eath stage cf
the seemingly irrelevant data from previcus ccmponent pred.=ms. A rumber
of authors have investigated this aspect cf ccampound decision prob;ems,-

notably Robbins [ 5], Hannar and Rotbtics @ 11, Samue: [ &7, { 97, Hanrar
> K s b

Al

and Van Ryzin [2 ], Van Ryzin {1.', and Swain .i2!. These refererces
J

are cited chronoclogically to indicate stages in the evo,uticn of the

“

subject and are not exhaustive. In the =ariier papers { 3|, { .| aud [ 8]

the space of "states of nature,” i.e., tne rfami.y of distribution func-
tions governing the observaticns, is assumed fc be finite,so that these
models are not suitable for most appiications. [n these parpers, and in

[ 9] as well, the main resuits are concsrned cniy with tne convergence

to zero of the difference between the average risk and a cerrain "cptimal”
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goal (discussed in detail below) as the aumber of component problems
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e more recent pagers (| 2, (i-i) tne finite
state modei has been retained but strconger results invceiving bounds on
the deviations of the average risk frocm the desired goal and rates of
convergence to "optimality” are cbtained. The papers of Samuel [ 9] and
Swain [:0] deal with standard (infirite state: estimation problems with
squared error loss,and their results are therefore immediately relevant
to appiications. In all of these papers except ._.0! the "optimal” goal
asymptotically achieved by the average risk is defined in essentialliy
the same way. For each n, the average risk fcor the first n component
problems is compared tc the Bayes cptimal risk one cculd achieve for a
single component problem if the parameter of interest had a known

a priori distribution equal to the empirical distribution of the param-
éter values associated with the first n component prcblems. This
criterion does not, however, represent the best that can be achieved by
compound decision procedures, and in fact a varievy of more stringent
criteria may be defined which take 1ints ac:cun® emrpirica. dependencies
of various orders which may cccur in the seguerce cof parameter valiues.
At the suggestion of the present author, these more stringent criteria
were considered by Swain in [1J] and were shown to be asymptotically
achievable for the compound estimaticn probiem. Swain aisc obtains
bounds and rates of convergence for some cases.

—

. The object of the present paper is to find bounds for the deviations

of the average risk from variocus optimal goals for the two-action com=

pound decision problem. Attention is confined to certain c.asses of Loss

functions and compound decision procedures.and to the case of




discrete-valued observations. Both parametric and ncn~parametric models
are treated and the convergerice of the bounds to zerc 1s shown to be
ratewise sharp. In order tc state fthese results explicitly the problem
must be presented more formaily.
The compound decision problem consists of a sequence of component
problems where the jth component prcblem has the foilowing structure:
(a) The distribution governing the cbservations is denoted by Fj
and is a member of a specified family I o1 distribution functions
each assigning probability one to a fixed denumerable set of numbers

X

600 o

l) X2}

(b) The statistician obtains k independent cbservations with
common distribution functicn Fjo The observaticns are dencted by

the vector Xj = (X,.,, X

vao 5 X )
17 tey’ 7 Tk

(¢) TFor the parametric case the parameter of interest determines

Fj completely and is denoted by ng For the ncon-parametric case,
Xj = Eh(ij), where h(-) dis a specified function.

(d) On the basis of the observations tne stsTistician selects one

T

of two actions and incurs less L (M.}, & = i, 2, if action a is
= J

selected.
. - .. .th ‘ )
A typical compound decision rule for the comporent problem
is represented by Aj(x)) where EAj(x} is the prcbability of taking
action one if Xj = x. For each vaiue of the vectcr x, Aj(x) is a

random variable depending cn the mutually independent random vectors

Xl’ X2, soo XJ._lo The risk for the jtn problem is given by
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Letting pj(x) be the probability that X, = x, and

(1) o, (%) = (3 (4,) - T,())py(x)

the average risk for the first n component problems is given by

J=1i

It
i IS
oy

el !

n
/ 5 - = owim l
(Ll(xj) - Lg\kj))E{Aj(x)])(j = xJ;j\x) + = Y Lg(xj) s

|
Bk

n . n
‘gl:‘c: o (0E Ay(x) + o 2 L00)
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The "classical" goal that one attempts to achieve asymptotically,

is defined by considering a hypothetical Bayesian version of a typical

component problem. Suppose that for such a prcblem it is known that the
sampling distribution P 1is chosen randomly according to the discrete
& priori probability measure on % which assigns probability n-l to
each element of the set {Fl, Fg, ces Fn} of sampling distributions
arising in the first n component problems. If cne uses the decision
rule ®(x) (based only on the observations obtained for the single com~

ponent problem under consideration), where 5(x) is the probability of

taking action one when x 1is observed, the risk incurred is

ANt

i)
#
B

g o (x)8(x) + I% T 1,000




Letting

J
(5> mj(X) = igl ai(x) s d =1, 2, <o,

it is easily seen that the Bayes optimal decision rule is given by

1, mn(X) < 0

8% (x) =
0, mn(x) >0,

and the optimal Bayes risk is

i fon

(k) oY =

Lo ()~ 5 T L),

where mn(x)_ indicates the negative part of mn(x)a
The object is to discover compound decision procedures having the

property that the resulting average risks ';n satisfy

(5) \p; - ¥n1< b(n) , all a ,

where b(n) -0, as n - 0, and where b(n) 1is independent of the par-

ticular sequence F_, F , occurring. Theorem 1 of section 2 gives

1’ T2’
conditions under which a class of compound decision procedures will sat-

isfy ( 5) with b(n) = Kn_l/g, for a certain positive constant K

. =1
independent of the sequence of Fj’sc It is also noted that n /2 is

the best possible rate of convergence for this class of procedures.

Typically, of course, neither ?n nor p¥ will themselves converge to

limits.




In section 3, specific compound decision procedures satisfying the
conditions of Theorem 1 are presented for certain parametric cases
(Poisson, negative binomial, etc.) involving families of sampling dis-
tributions of exponential type. The non-parametric case is also discussed
and procedures satisfying Theorem 1 are given. A very simple loss

structure is used throughout. In fact it is assumed that

(6) L (V) - L) = e(r - b)

where b, ¢ are specified constants. It is also assumed that L (X
? 1

and LE(X) are bounded on any bounded interval of A‘s. The particular

loss functions

il

L, (1)

It

Ly(»)

where ¢ > 0 , clearly satisfy ( 6), and are quite reasonable for many
two-action problems of the one-sided hypothesis testing type. The argu-
ments presented extend almost without change to the case where

Ll(X) - Lg(k) is any specified polynomial in A. All of the compound
decision procedures considered here are based on the construction of

consistent unbiased estimates for each x of the guantities mj(x),

th

j=1,2, ... , defined by ( 3). Action one is then chosen in the

component problem if and only if the estimate of m,

; l(Xj) is negative.




The compourd decision prcbliem 1s close.y related ¢ the "empirical
Bayes” problem where an actual unknown g priori distribubion is assumed
to exist. The empirica’l Bayes prcblem ccrrespording =0 wne compound
decision prob.em corsidered here is discussed in the vcn-parametric case
by the present author in (3., and ir the parametric case by Robbirs (6]
and Samue_ [7]. With the exceptiorn of the vecessity for a certain amourt
of auxiliary randomization, the compcund decisicn procedures exhibited
in section 3 are essentially the same as *hose suggested for the corre-
sporndirig empirical Bayes problems.

The "classical” goal for compourd decisior prob.ems described above
may be generalized to produce a sequerice of more stringent goalis by
extending the definition of the hypotherica. Bayes decisict problem.
Instead of assuming tha*t the present sampiing distrituricn F  1s selected
by a uniform a priori measure over F._, Fgﬁ seo y P 3 oOne may assume tnat

~ ~ ~ A - 2 ~ P L. o2 »
the vector ({(F., Fg? oo s F+) ¢t sampling distribubiors corresponding

to the © - 1 most recent «~omgpconer.t prov_ems and "he gressrt prob.em
},

respectively, 1s a random veitor with s discrete a rricri probatility

measure on the t=-fold product [TxIx ¢ %, which assigns grobabiiit
. g & y

(n-t+1)"" tc each of the vechers QFJ-**"’ ijf,

RS

coo g PF.l,

g=%, t+1, ... , n. The optimai Bayes decisicr ruie fir such a probiem
must involve the observaticrs obtained in rne t - | most recen* (ompo-
nent probiems as well as the preseut one. 1f the resgaiting baves risk

is denoted by p?}n, it 1s intuaitively plausible that this quantity

should be decreasing in t since advantage is 7ake: c¢f pcssib.ie empirical

dependencies of higher order as t is increased. lhecrem 2 cf section b

shows that for each t > 1,

0
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where & = O{nn 7). For "most" sequences of Fj‘s one would expect
D¥+l n to be significantly smaller than o¥* when t 1is small, since
2 Uy

"most'" sequences will exhibit substantial empirical dependencies cf

small order. In section 4 certain "t-fold" compound decision

A 4l o
ed and the at

L3

ainment of the goal P2 o is
2

4

C

discussed. Illustrations of specific t-fold compound decision
procedures are given for the problems considered in the "classical”

case in section 3.

Some suggestions for further generalizations are given in section 5.

2. General Results:

In this section we assume the existence for each x of an estimator
&(x), which for any element F of & 1is an unbiased estimator of
a(x) = (Ll(X) - LZ(X))p(x), where M\ 1is the parameter value and pi{x)
the probability mass function associated with F . The estimator &(x),
which may be randomized, must depend only on cbservaticns having F as
their common c.d.f., and is essumed to have a finite third absolute
moment for each x . For each x , let ag(x) = Var{&{x}) and
P(x) = Bla(x) -a(x)]” .

We now introduce two conditions which impose certain restrictioms

~

on § and O .

Condition 1: There exists a finite number E and a function po(x}

) \ - 1/2
such that (a)j{ipo(x)l/ <« , and for each element of & the
X

corresponding A and p(x) satisfy (b) |A < B, and (c) p(x) S:PO(X)

for all x .

9



Condition 2: There exists a finite number C > and a positive function

e(x) <1 such that (a) ) e(x) <, (b} ZpO(X)e(x)-5 < ¢, and for each

X ~y
- FON X 2o
element of & and each x, (c) e (x!< o (x;” <C(c(x) + poax;}, and

(@) 22(x) <c.
B

let aj(x), oi(x), and 7§(x) represent Q(x), og(x), and 75(x)

For any sequence F of elements of < and for each x,

l’ 27 eceo 2

respectively for the sampling distributions Fj, =1l 2, ... . It

is apparent that for fixed x, the sequence &j(x), =11 2, ... , 1is
a sequence of independent random variables, provided that any randomiza-
tion involved is performed independently for each j.

For each x and for Jj=1, 2, ... , let
.
8,(x) = g a(x)

We observe that ESj(x) = mj(x), arnd denote tne variance of Sj(x) by

s?(x) =y Ui(x)o The compourd decision procedure tz be evaluated is
=1
given for Jj > 1 by

(1) Aj(x) =

The decision rule Al(x) for the first comporent prcbiem may be

arbitrary. We now state and prove the folilowing theorem:

10
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Theorem 1. 1f Conditions 1 and 2 are satisfied then there exists a
finite constant K such that the average risk for the compound decision

procedure (7 ) satisfies
- % -1/2
lrn Dn} <Xn s
for all n, for every sequence of elements of 5.

Proof: Recalling (2), (L), and (7 ) we have

(8) nlr - oX| <Z 2 o (x)Pls;_,(x) <o)+ e(x) - m (%)
j=2

where g(x) represents the contribution to the risk due to the arbitrary
decision rule Al(x) used in the first component problem. Since by
Condition 1 and (6), . |&(x)] is bounded it will te ignored in the
subsequent argument. T}/cie now consider an arbitrary fixed value of X

and suppress this value whenever it appears as the argument cf a pre-
viously defined function. Letting &(-) represent the c.d.f. of a

standard normal random variable, we know by the Berry-Esseen theorem

(see e.g., [4], p. 288) that there exists a constant C such that

(9) ZocJP{S <0}-Za®<

j=2
n . - m,
<ZEQ.IP{EQLL__L— _g__%}_@< )
- . J S. -
J=2 J-i J=i
n !or.] J-1
3 (n)
=% Z .~ iR
J=2 S 1=




We seek a bound on the second sum on the left hand side of (8} urnder

the assumption that m; = 0, i.e., m, > 0. For ary particular sequence

Fl’ F2, sss 4, such that mn_f 0, for y > 1, let

. . s =2
sj_l)J_-L<y‘§J‘J

s(y) =
.2 : =2y : 2 .
s, ., * S, = 8, . J\y - + ; -3 <y <
g I lsy msg )y -3 H T s 0 - S y<d,
for j=2, 3, ... . Thus, we have

I m(y)\ fj < oy,
fj_l m'(y)e < "s(y.5>dy "L PNy

Aiso, since ®(+) is monotone and bounded by one, ard m(y}/slyl 1is

2.

monotone on the interval (j - i, d - j ~: fcr each g > o, we have
J n(y) m, m, m, 5
f q"’s‘(’% dy.-@_uséL'- E-@'E'L)”©<“§L: + 237,
3-1 Y g1 g1 ol
12

.




Hence, letting o(+) = o'(-),

(10)

Yap(5) -] e (- #Y) o

J j=1 1

j J-l/ ”’J-l S\¥/)/
n m -1 n -0
< X lalfolg >-4> ;L—> +2 ) laly
j=2 J J~1 J=1 J=2
L, 4 lo‘il\ 4 ]O‘il\! N,
< L o jubimsT=)-0il-5—= )| t2 L |%lJ
J=2 j \253_1} \ ESJ_:L/‘ j=2 dJd

IA

2

n 04 n

o) L o +2 T loyls? -y
5=2 %5-1 j=2 ¢

We must now bound the integral appearing on the left hand side of (10)
uniformly in all functions m(y) arnd s{y) corresponding to seguences
Fl, Fp, -+ , suchthat m(n) >0. Iet h(y) = Y} o that

s(y)
n' (y) = s'(y)nly) + s(y)h'(y) (except at the points y =J - 1

-2

j- 3'2, j=2,3 ..., where m'(y) is not defined). Let

13



(11) T =fln m' (y)o <- 12%%—> dy

-

i
f siy)n'{y)o =n(y))dy -
.

n
=f s' (y)h(y)e(-h(y))dy
1

Integrating the first expression by parts and integrating the resulting

expression by parts again, we have

—
il

n
s(n)h(n)o(-n(n)) - s{L)h(ije(-hil)) +f sty)aly b {(y)o(=nly))dy
1

I-»
6(n)n(n)6(-h(n)) - s(n)ol~hin)) * f s (3} ~nly) )y
1
+ si)ol-nl1)} = sidn{L)e{-h(1); .

Now, observing that max Z&(=Z) = C o -C ), where &(=C.) = C o{C,), we
, i 1 1 1771
7 >0
have

(12) 1] < (sln) = s{L)3(Co(c,) + 20007 - R

-

Combining ( 9), (lO), and (12} we see that for any fixed X, the summand
‘n) {n)

() . gm) g

on the right hand side of (8) is bounded by R: 5 5
1

for
any case where mn(x) > 0. The same resu.t holds when n&(x} < 0, since
o— 1

then

14




n n
420 @P(S; ; <0} -m = _Zﬂ a,(P(s, ; <0] -1
<J=L JTL
= - a.P{s >0} ,
=1 9 J-1

and essentially the same argument applies.

We now reintroduce the supressed variable x and undertake to
demonstrate that the quantity z:(R(n)( ) + R\n)( + ;n)(x)) is
bounded by Knl/2 where X is 1ndependent of the seguence Fl’ Fg, oo
Letting C, = o(B + |b|) and recalling (1}, we see that by Condition 1
(v) and (c), laj(x)] < Cgpé(x) < Cepo(x), for each x and Jj. Thus,

referring to (9) we have by Conditions 2 (b), {c), and (d)

§R n)(x) < ColoC g 3 é -1/2
1/2 ,

< C
< 2C002,n

Similarly, referring to (10), we have

5 1) () W(O)szpo(x) P -0 Yo b s
— I + ] /

” 2 2 ” eZ‘xi j=2 2 % J 5=

2. 1/2
< 2®(O)C2Cn + 202c3 ,

co
where E: . For Rgn)(x) given by (12), we note that for
)

each s, ( (x) so that by Condition 2 (c¢)

15



s, (%) gicl/gnl/g(eEQX) + po(xJ)L/2

Hence by Conditions 1 (a) and 2 (a)

1/2 1/2 SRR V=
)Z{: sn(x) <C'"n g (e(x) P (%) )

< 2 Bo)nl/e ,

/2 . : . i
where Bo = z:po(x)L/ . Tnis completes the prcof of the theorem.
x

Remark 1: The result of Theorem 1 1s ratewise sharp since the conditions

F F

of the theorem do not, for example, exclude sequences F PUREERE I
L

l’

such that xj =b (i.e., aj(x) =0} for j<n - n*/g, and

— . . oy 1/2 _ .
= : ',, . a. . - ,\ - A e{ : B - < <.‘°
M. bo >b (i.e., J(x) b b}pJ‘X}) for n - n <J<nmn

J
ri
For such sequences the contribution of the fterms z: aj(x)P{Sj_l(x) < 0}

J=1,
appearing in (8) will typicalily be of the crder of nJ'/2

and positive
for each x. Many sequences having this property may be constructed,
and such sequences can occur in both the parametric and non-parametric
applications discussed in the next section. The constant K appearing

in the statement of Theorem 1 is defined implicitly in the proof and

the value so determined is not "best" in any sense.

Remark 2: The maximization of the integral 1, defined by (11), over
the class of all bounded continuous differentiabie functicns m(y), may
be viewed as a classical variational prcblem whose solution would yield

F 000
°

valuable insight concerning "least favorable" sequences F o

1)
Unfortunately, the variaticnal problem is singuiar aad cannct be solved

by standard methods.

N
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3. Applications:

A. The parametric case. The parametric families for which estimators

&j(x) satisfying the conditions of Theorem 1 can be constructed are
essentially those for which the compound estimation problem is tractable
(see, e.g., [9]).

The first example, which includes the Poisson and negative binomial
families as special cases, is the exponential family with probability

mass function
p(x) = g(xBOT , for x =0, 1, ...,

where g{x) >0 and g(x)/eglx + 1) is bounded for a

/ [Sa84

|.—.

family & consists of all distributions having probability mass functions
of this form for a given g(x) with 0 <Xx< B, vhere B and Bl >B

are chosen so that E:S(X)Bi <w. For this example, we confine attention
to situations where Z single observation is obtained for each component
problem, i.e., Xj = le. This observation may be regarded as the value
assumed by a sufficient statistic perhaps based on a larger number of

observations.

For each x and j let

cg(x) _
Q%TD'+ZJ(X)’ for Xj—x+l

(13) a.(x) =( -cb + Zj(x) , for Xj

I
o]

Zj(x) s otherwise ;

17



where for each X, Zl(x), Zz(x), ... , 1is a sequence of independent
random variables independent of the Xj°s, such that EZj{x) = 0,

EZj(x.)2 = egfx), and the third absolute moments of the Zj(x)‘s are
bounded uniformiy in x and Jj. The significance oOf the Zj(xﬁ’s which
represent auxiliary randomization is discussed in Remark 3 below. It is
evident that for each x and j E &j(x} = C(kj - b)pj{x) = aj(x),

ee(x) <'o§(x) < C(eg(x) - pj(xw), and 77(x) < G, for some suitably

5 G AN

chosen C. Ietting po(x) = 200, "g(xjB", and noting that
g(0) < ¥ e(x)V* =B (1), we see that for each X, p_(x) >p(x) for all

b'¢
. ; L/2 . . N X . - .
elements of § and z:poyx} / < o since Z:g(x)B‘ <o fcr B, > B,

X 4 . X &
Condition 1 and Conditions 2 \¢) and 1d) are therefore satisfied by
estimators of the form (13). To show that Theorem L holds for these

estimators it remains to exhibit Zj(x)’s satisfying Conditions 2 (a)

and (b) with po(x) as defined above. For fixed & > 0, let

. - (148 i - . 1
(x + 1) (1+0 s With probability = L/2

. cey 148 ] ‘
-(x + 1 + 1) , wirh procabiiity = L/2 .

=2 1+D
)(‘)

2 gfx) =(x + 1

Then EZJ(X) = € and Conditior 2 (a) is satisfied.

. 3\ X - v e A
Since Z:g(x)Bl converges fcr B, > B, it fcilicws thar
X ’ +
3(1+9) L ST s

z:(x + l) ‘po(x) converges and Corditicn 2 (b, is satisfied.
X

Operationally, only one randomizaticn need be performed at each
stage since for fixed Jj, the ZJ(X)'s rieed no* be independent for

different x's and may be compited on the basis of the cutcome of the

same randomization experiment..

28




A second parametric example involves the family of distributions

[ P <)
labo 4

¥ unciions of the form
N ble
p(x) = g(x)p(r) o T > Xx=0,1; <o 3 A>0,
where a

1 is a specified positive constant,

al(allf;}) . (al + (x - 1))

gx) =

XI

g(0) =1, and

g1
+ A °

) =
pir) = o

This family possesses the interesting property that EX = X

by
0

'

| =]

.t

or
L

These distributions are actually reparameterizations of negative binomial

distributions. For each x and J let

/
ca,g(x)
= + 2. (x) X.=x+1t,1t=1, 2 .

glx +1) 57y ’ >
A { \
a.(x) = -cb + Z4(X} s X, =X
J J o

Zj(x) , otherwise ,

\
where the Zj(x)'s are defined as in the previous example. Again
E Gs(x) = Oh(x), and under the same conditions on the A's as in the
previous example, and with an aralogous definition of po(x) , it is
easily verified that Theorem 1 holds for this exampie also.
The important case of the binomial distribution is treated below

as a special case of the non-parametric problem.




B. The non-parametric case: We now consider tne situatiorn where the

probability mass functions p(x) corresponding tc elements c¢f & are
not assumed to have a known functicnai fcrm ard are nc™ necessariiy in a
one to one relationship with the vaiies of A. For this case,
A= Eh(X), where h(+) 1is a specified function and X is a typical
observation having probability mass Tuncrior pix). Thus, for instance,
A might be EX as in the second parametric exampie above. Other
possibilities are A = E(X - t)ey cr A - P{X <t} for some specified *.
Since so little is assumed about the probariiity structure of the
problem, it is not surprising that the goal which is attailnable in this
case is slightly less stringent than that achieved ir the parametric
case. Specifically, if k c¢bservations ares obtained for each component
problem, the procedure discussed beliow willi satisfy the conditicns of
Theorem 1 with pg interpreted as trhe ¢rrimal risk focr a hypcthetical
Bayes problem involving only k - L observations. Thus, cre observaticn
is sacrificed in the interests of generality cr as the price of ignorance.
For the case of k observatiors (k{f 2)3
p(x) = p'(xl)p'(xg) oo p'(xk), where x = i{x_, Kos wee xk) and p'l-)
is the probability mass function for s sirngle cbservariosn. Letting
x! = (Xl’ X5y ene s xk-l) ard recaliirg (. ) and [ 2 we see that if a
compound decision rule Aj(x‘) based or. x' 1s used, ther the expression
for ?n remains unchanged except that =x 1s replaced by x’' throughout.
We therefore seek a suitable estimate of @, x' 1. TLe%

J
y(x') = (yl, Yor oo s yk-l)’ wheve vy :Iygfi see < Viey are the

ordered values of the components of x'. Fur +t =1, 2, ... ; k, and all
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. (t) _ .
j, let Xj = (le’ x2j, cee Xt_l’j, Xt+l,j, cee xjk). Finally,

for each j and x' let

o(n(x, ) - DMGe) + 2x) v = v

s ~oy, f.s tzlgcun >
(ah) - aylxt) = o > &
Zj(x') , otherwise
m tm b e .
with M(x') = 1.2 T mk-l , Where mi is the number of components of

x' having the ith smallest distinct value. Even though it is possible

for y(th)) to equal y(x') for more than one value of t, aj(x') is
still well defined since ij will have the same value for each such case.
If EZj(x‘) = 0, it is evident that E &j(x-) = aj(x'). If we
assume that EIh(X)'5 < 0 < », for any single observation X with proba-
bility mass function corresponding to an element of $, and if we assume
the existence of a function pé(“) dominating each 7p'(°) corresponding
to an element of & and satisfying ) pé(xl)l/g < w, we see that
Condition 1 is satisfied‘with x! re;%acing X, The choice of the
randomizing Zj(x')'s so that Condition 2 is satisfied depends on the

particular denumerable set of values which the observations may assume.

If this set is the set of integers, then letting

[ k=1 148
- 11 |x, +1/2|7" , with probability = 1/2
i=1
Z.(x') =
S = ¢
LS L1+
!xi +1/2] , with probability = 1/2 ,
\ =1
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for some © > 0, we see that Conditicn 2 is satisfied with x replaced

by x' provided z: |Xli5(l+a)pé(xl) < », Under such circumstances,

b3
the result of Theorém 1 holds with the interpretation of pﬁ given
above. Tt should be noted that the case of the binomial distribution is
included in this framework if we allow only the values zero and one for
each individual observation, and set hix) = x so that

A=7p (1) =1~ 7p'(0). This case is not really "non-parametric"” since

the value of A determines the distribuvion of the observations.

Remark 3: If the A's are bounded away from zero in the two parametiric

examples discussed in Part A of this section, 1t is easily verified that
Condition 2, and hence Theorem ., hoids without the iutroduction of the
randomizing Zj(x)“s.

The author knows of no examples within tne context of the present
paper (parametric or non-parametric! for which rardomization caan be
demonstrated to be necessary for the resuit of Theorem L, prcvided the
conditions unrelated tc randomizatiow are szatisfied. It is coajectured
that such randomization is not esserntial; althougn because of the form
of the Berry-Esseen bound, it is required for the method of proof used

here.
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k. The +t-dependent Case:

In this section criteria based on generalizations of ¥ are

i

introduced.

Consider a hypothetical Bayes decision problem in which one of two
actions is chosen on the basis k-dimensional vectors of cbservaticns
Xl’ Xg, vee X%, having a random joint probability mass function

p(xl, X5y eee s xt) = pl(xl)pE(XQ) seo pJ(xt), where the pi(°)’s are

random functions whose structure is described beicw. Note that Xi now
stands for a k-dimensional vector and not a real component as was the

case heretofore.
Now suppose that the vector of random probability mass functions

(pl(°), 52(-), e ;t(°)) correspends to the random vector of sampling

~ ~

distributions (Fl, Foy eae s Ft), chosen according to the discrete

a priori probability measure on the t-fold product space Sxx °°° xJ

which assigns probability (n -+ + 1)~ +to each of the vectors

F., . . . ~s eeo ; J ts 1 ‘e .
. J-"C‘f’J.'. FJ"E"’E’ ; J'll o -3 P 2

iosses depend only on the vaiue of the parameter A, assaciated with

~
pt(°), the risk incurred if the arbitrary decision ruie

B(Xl, X5y eee s xt) is used, is given by

bed
- 1 : ,
Pton " Tm - T F1 X ) Bxys X5 eee s %) Y Oy 51X %o cee s %)
(xl)xgi"'“}xt. J:t
- n
4 * !
‘n—t+l%§rL2\>"j) ’

where, for j >+t
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- (T - | (v ¥ { PP
at j(xl’ Xg’ o 2 Xt) - (Ll(xj) Le()\lj))pj'—t:';'l\x]_)pj_t‘"g(xg) pj(x.t)“

3

Letting

s X.)

ii C_to
ii ]

mt,j(xl’ Koy eee s xt) = at,i(xl’ Xys ees N

i

s

for Jj >t, the optimal Bayes risk is clearly given by

bt

+

T
1 ﬂ .
* o ~ —
Pt,n Tm-t+1 Lm0 Xy e x0T F gy 2 L),
? (x,,% x,) 7 =t
) l) 2”"3 1 J=T

(4

and is achieved by the decislon rule

1, mtjn(xly Kgs eee 5 X ) <O
6*(x1, Xpp eee s xt) =

0 , otherwise .

If the sequence 51(°), 52(°), «eo , were a function valued
stochastic process with known probability structure involving dependencies
of order t + 1, one would expect the Bayes risk based on t + 1 wvectors
of observations to be smaller, in general, than that based on only t
vectors of observations. In the present case; the hypothetical a priori
probability measure changes as t changes; but an analogous result holds

as is shown by the following elementary theorem:

ek




Theorem 2: If ]Li(x)[ <K <w , {

i, 2, for al1 A's corresponding

inite nunber Ki such that, for

for any fixed t and n >t , for every sequence of elements of 3 .

Proof: The proof is based on +he elementary fact that for any

n .
17 Dor eee 5 b, <j§l bj> > Z b.. Thus

JlJ

b

* - *
Pt+1,n ~ Pt,n

1 7 Il ‘ -
_<..n - 1 Z Z Of++l,J(X cee X‘t+l‘)>
(x5 eeesx )=t
l ’
= n Z < Z atj(xl, eees X ) + a t(xl, soce 3 X )\>

(xl,...,x ) Nj=t+l

+ 2K (n - -ty
<21 ¥ 5 za e, % ) )
Sn-t e, 30500 > Koy
(XE""’Xt+l) J=t+1 x
1
- == {j( J(xl, cee 5 X )> + ¢\x y ese sy X )‘}
—t+l ts

\Xl,ooo,x

’ ":L
+ 2K (n - t)

-1
< MKO(n - t)
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i 4 = s » ° T i i
since ;: at+l,j(xl’ cee Xt+l) af,j(XE’ s Xt+1) his establishes
the desired result.

As was remarked in Section 1, it is to be expected that many
sequences of sampling distributions will exhibit regularities that are
equivalent to empirical dependencies. Such sequences will tend to yield
values of p¥ substantially smaller than those for p¥* _, especially

t+1l,n t,n
when t 1is small.
We now consider the use of compound decision rules of the form
th
A ® o0 o ) j . 1 j .
t,j(xjmt+l’ , XJ) for the J component problem for J >t. It
is understood that AE J.(°) may depend on observations obtained for
"3

component problems prior to that with index j-t+1, and for 1< j <t,

A . i i . il * = oso . i ]
t,j( ) is arbitrary. Letting xF = (x), X, R Xt) for notational
simplicity, the average risk for the tth to the nth component problems

then becomes

09 3, ek

(*) of a  .(°)

For J > 2t we assume that there exist estimators o« i
~J

which are unbiased and which depend on the vectors of observations

Xps Xpp wee s Xy yo Let

l}

S, .(x¥) = f a, . (x¥)
t,J t) ;e Bl 7
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for § >2t For J > 2t we consider compound decision rules of the
form
(1, 8, . . (x*}<o0
£,0-1Yt
(16) At’j(xjg) = <
o, otherwise .

For t<j<2t, & j(-) may be arbitrary.
)

The problem as formulated thus far appears to be essentialliy the
same as that considered in section 2. Howsver, an sdditional difficuity
arises from the fact that, for all cases of interest, the sequence
o) (Y3 () i t-d dent seguenc -4
%, 2e0 "/ ut,2t+l\ Js <+ s 1s a t-dependent seguence of random functions.
That is, @& .(+) and @, ,,(-) are independent only if fj -3 >t

t,J t,J

The author has been able to show that if compound decision rules

of the form (16) are used, then there exist a € >0 and a finite X

such that for all n
(a7) |5, - ox | <xe,
bl

for all sequences Fl, Fg, +++ « The conditions for this result to kold
are straightforward generalizations to the t-dependent case of Conditions
1l and 2. The proof of (17), which is rather complex, will not be
reproduced here since the author is convinced that, in fact, (17) hoids
with € = 1/2 . A "proof" of this conjecture has been produced which

requires a sultable version of the Berry-Esseen theorem for t-dependent

random variables. Unfortunately, no such theorem seems to be available.
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The parametric and non-parametric estimators of the Q's given in
section 3 are readily adaptable to the t-dependent case. This is
illustrated by considering the simplest parametric case, i.e., the case
of the geometric distribution. For this case & single observation

having probability mass function pj(x) = %jx

1 -A), x=0,1, ..o,
is obtained for the jth component problem. Thus, recalling that

x ¥ = (xl,xg,..,,xt) s

X, X, X,
Ax, %) = - b A RS WS (1055 VRN IO G TS W B
at,j(xt ) c(xj b’xj-t+l o2 ; (1 ot Yeootl j)
For j > 2t 1let
* =X - = . =
c + Zj(xt Y, Xj x, 1, Xj-l Xi 1 ’Xj-t-l X,
A X - _ _.*\ —y o o =
at,j(xt ) { -cb + Zj(xt Y, Xj Xy Xg-l X, 1 Xy X
Zj(xt*) , otherwise ,

where for some & > 0 ,

t
- l I / .,\—(":_—‘r@) . e o
jo1 \XytE) , with probavility = i/2
* =
Zj(xt ) = < N |
Il — (148 )
{=1 (Xi+l) (140) , with probability = 1/2 .

If we restrict the possible values of A to O <A <EB<1, then (17)

holds for the compound decision rule (16) based on these 's . The

o, .
t,J
other parametric and non-parametric cases are disposed of in a similar

fashion.
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Remark L4: Since the t-dependent case involves the "matching" of t

ors of observations with sequences of t consecutive past observation

vectors, it is clear that, if t is much greater than one, the number

of component problems must be guite large before goocd rasult

expected. Thnis consideration, together with the fact that the improve-

ment in p¥* . compared with p* tends to be greatest when t 1is
t+i,n t,n

small, indicates that in most cases one should use values of t on the

order of one, two. or three.

5. Conclusion:

As is customary in papers in this area, we take note of the fact
that when the number of component problems is small, thes procedures
suggested will be relatively ineffective. Thus, as a practical matter,
it is necessary to provide some means of orderly transition from
"elassical" decision procedures to compound decision procedures as the
number of component problems increases.

Hopefully, the results of the present paper can te gererslized in
at least two directions. First, it would be very desirable to find
similar results for finite action protlems with mors than two possible
actions. Often such formulations conform more closely to real situations.
Furthermore, greater flexibility in the choice of the loss structure can

be obtained even under the restriction that the pairwise differences in

A second important generalization would be the extension of the

present methods to cases involving continuous random variables. Some




such results are obtained for both the parametric and non-parametric
compound estimation problems in [91 aand [10]. It is conjectured that,
for sufficiently sophisticated methods, bounds of order arbitrarily
close to n_l/2 on the differernce between the average risk and the

appropriate goal can be obtained in the continuous case.
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